The Mathematics of Quantum Mechanics and Networks

Ivan Contreras
Mathematics and Statistics

SURF Faculty Presentations, Amherst College
August 2, 2019

A little story

- Question: What is Mathematical Physics?

A little story

- Question: What is Mathematical Physics?
- Answer: It's like a game of charades.

A little story

- Question: What is Mathematical Physics?
- Answer: It's like a game of charades.
- Two teams: Mathematicians and Physicists.

A little story

- Question: What is Mathematical Physics?
- Answer: It's like a game of charades.
- Two teams: Mathematicians and Physicists.
- Rules: No words, just gestures.

A little story

- Question: What is Mathematical Physics?
- Answer: It's like a game of charades.
- Two teams: Mathematicians and Physicists.
- Rules: No words, just gestures.
- Objective: Decipher the word/sentence from the other team.

A little story

- Question: What is Mathematical Physics?
- Answer: It's like a game of charades.
- Two teams: Mathematicians and Physicists.
- Rules: No words, just gestures.
- Objective: Decipher the word/sentence from the other team.
- Examples: Electron, quantum, symmetry, entropy, state, Hilbert space, etc.

A little story

- Question: What is Mathematical Physics?
- Answer: It's like a game of charades.
- Two teams: Mathematicians and Physicists.
- Rules: No words, just gestures.
- Objective: Decipher the word/sentence from the other team.
- Examples: Electron, quantum, symmetry, entropy, state, Hilbert space, etc.

It is a win-win game!

Playing the game

- Question: How to represent Quantum Mechanics?

Playing the game

- Question: How to represent Quantum Mechanics?
- Answer: It's like a piñata party!

Quantum Mechanics

- Piñata: Nucleus

Quantum Mechanics

- Piñata: Nucleus
- Balloons: Electrons

Quantum Mechanics

- Piñata: Nucleus
- Balloons: Electrons
- Stick: Measuring Device

Quantum Mechanics

- Piñata: Nucleus
- Balloons: Electrons
- Stick: Measuring Device

Mathematical Challenges in QM

- Blindfolding: There is a huge difference of scale between the experimentalist and the experiment (approx. $10^{-15} \mathrm{ft}$).

Mathematical Challenges in QM

- Blindfolding: There is a huge difference of scale between the experimentalist and the experiment (approx. $10^{-15} \mathrm{ft}$).
- Interference: The measurements themselves alter the outcome of the experiment.

Mathematical Challenges in QM

- Blindfolding: There is a huge difference of scale between the experimentalist and the experiment (approx. $10^{-15} \mathrm{ft}$).
- Interference: The measurements themselves alter the outcome of the experiment.
- Uncertainty:(a.k.a. intrinsic error). There is no absolute precision while doing simultaneous measurements.

$$
\sigma(p) \sigma(q) \geq \frac{\hbar}{2}
$$

Mathematical Challenges in QM

- Blindfolding: There is a huge difference of scale between the experimentalist and the experiment (approx. $10^{-15} \mathrm{ft}$).
- Interference: The measurements themselves alter the outcome of the experiment.
- Uncertainty:(a.k.a. intrinsic error). There is no absolute precision while doing simultaneous measurements.

$$
\sigma(p) \sigma(q) \geq \frac{\hbar}{2}
$$

- Duality: A particle behaves both as a particle and as a wave.

Experimental Evidence

Mathematical Formulation of QM

Definition (The Schrödinger Equation of a free particle)

For a quantum state, $|\Psi(t)\rangle$, the Schrödinger Equation is given by

$$
\frac{\partial|\Psi(t)\rangle}{\partial t}=i \hbar \Delta|\psi(t)\rangle
$$

where Δ is the Laplacian Operator

$$
\Delta=\sum_{i}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

- The space of quantum states is huge (an infinite dimensional Hilbert space).
- The solutions depend on initial conditions, and the shape of the spae

Our Summer Research

THE TEAM: Kitty Girjau, Andrew Moore, Andrew Rosevear, Andrew Tawfeek, Matt Sanders, Dawit Wachelo

Our Summer Research

THE TEAM: Kitty Girjau, Andrew Moore, Andrew Rosevear, Andrew Tawfeek, Matt Sanders, Dawit Wachelo

Our Summer Research

- We study a discrete model of QM, a quantum particle confined on a graph (i.e. network).

Our Summer Research

- We study a discrete model of QM, a quantum particle confined on a graph (i.e. network).
- The Laplace operator becomes a matrix!

Our Summer Research

- We study a discrete model of QM, a quantum particle confined on a graph (i.e. network).
- The Laplace operator becomes a matrix!
- The study of the geometry of the configuration space becomes much simpler.
- We want to relate the solutions of this equation and the complexity of the graph.

Spectral Graph Theory

Spectral Graph Theory is the analysis of the properties of a graph in relationship with the properties of the matrices associated with that graph.

Spectral Graph Theory

Spectral Graph Theory is the analysis of the properties of a graph in relationship with the properties of the matrices associated with that graph.

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$

Spectral Graph Theory

Definition (The Laplacian Matrix)

Given the adjacency matrix, A, and the degree matrix, D, for a given graph Γ, the Laplacian, $\Delta(\Gamma)$ of the graph is defined as a graph operator that is represented as a symmetric, non-invertible matrix with non-negative diagonal elements and whose rows and columns sum to zero:

$$
\Delta=D-A
$$

Example (for K_{4}):
$\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]-\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]=\left[\begin{array}{cccc}3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3\end{array}\right]$

Von Neumann Entropy of Graphs

Definition (The Von Neumann Graph Entropy (VNGE))

Given a Laplacian, Δ, for a graph Γ, the VNGE of Γ is given as

$$
S(\Gamma)=-\sum_{i} \lambda_{i} \log _{2} \lambda_{i}
$$

where λ_{i} are the nonzero eigenvalues of Δ.

Understanding Von Neumann Entropy

Informally, entropy is a measure of the disorder within a system.
Information entropy (Shannon) vs Quantum entropy (Von Neumann)
Although an exact interpretation of the Von Neumann entropy is still an open question, it is a rough measure of the complexity of a graph.

Definition (The Discrete Schrödinger Equation)

Given a graph, Γ, and a quantum state, $|\Psi(t)\rangle$, the Discrete Schrödinger Equation is given by

$$
\frac{\partial|\Psi(t)\rangle}{\partial t}=i \Delta|\psi(t)\rangle
$$

where Δ is the Graph Laplacian Matrix.

Main Results

- We developed a polynomial approximation of the graph entropy.

Main Results

- We developed a polynomial approximation of the graph entropy.
- We studied the geometry of the solutions of the Discrete Schrödinger Equation.

Main Results

- We developed a polynomial approximation of the graph entropy.
- We studied the geometry of the solutions of the Discrete Schrödinger Equation.
- There is a connection between the linear algebra of the graph Laplacian and the shape of the graph (graph topology).

Future Directions

* Build a rigorous link between entropy and the solutions of the Discrete Schrödinger Equation.
* Find a general formula for the entropy of the gluing of two graphs.
* Explore further the link between quantum mechanics and the shape of graphs.

Thank You!

Thanks for your attention!

