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This project is fundamentally about studying graphs, and the key object we use to study those graphs is
the graph Laplacian. In this section we will define the graph Laplacian, and explore a few of its properties
and how it connects to every other area of the project.

The graph Laplacian is a matrix, an array of numbers. It is derived from a graph, a set of vertices
connected with edges. One can assign an orientation to edges, turning them from lines into arrows. While
we will do that at some points in the project, it is not fundamentally needed to define the graph Laplacian.
To define the Laplacian, we first need to define a couple other graph matrices. Say we have a graph such as
this one, call it Γ:

The degree of a vertex vi is the number of edges incident to that vertex, and denoted deg(vi). For example,
vertex v2 has degree 2. We denote the number of vertices in a graph as |V |. The valency matrix valΓ of a
graph is the |V | × |V | matrix whose ij th entry (that is, its ith row and j th column) is given by

valΓ(i, j) =

{
deg(vi) if i = j

0 otherwise
.

In other words, this is a matrix which is zero every except the diagonal, and the diagonal will contain the
degree of each vertex. The valency matrix for the graph above is

2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

 .

The other matrix one needs to define the graph Laplacian is the adjacency matrix AΓ. This is also a
|V | × |V | square matrix, and its ij th entry is given by

AΓ(i, j) =

{
1 if an edge connects vi and vj

0 otherwise
.

For our graph, the adjacency matrix is 
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 .

Now that we have the valency and adjacency matrices, defining the graph Laplacian ∆Γ is simple:
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∆Γ = valΓ −AΓ.

Thus the graph Laplacian of this graph is
2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 .

Why the graph Laplacian?

Now, you may be wondering why the graph Laplacian is defined this way, especially if you’re familiar
with the Laplacian differential operator from multivariable calculus denoted by the same symbol. Imagine
the following: take a graph in the shape of a grid, and successively add more and more boxes to grid. At
the same time, take the size of the boxes in the grid and shrink them. As this process repeats indefinitely,
the graph will get closer and closer to a model of continuous space. As it turns out, if one looks at how
the Laplacian acts in this limit, it will turn into the calculus Laplacian! So in a way, this really is just the
discrete version of the calculus Laplacian.

What we really care about , though, is what are called the eigenvalues of the Laplacian.

Eigenvalues and Eigenvectors

To understand eigenvalues (and their associated eigenvectors) of a matrix, we must change the way we
think about matrices. We can multiply matrices times vectors. Recall that a vector can be thought of as an
arrow pointing in space (though for the Laplacian given above, you will need to multiply it by a 4-dimensional
vector, so don’t try to picture it too hard). For square matrices, this will take a matrix and a vector and
give back a vector of the same size. In this way, a square matrix A acts as a function that takes in a vector

~x and outputs another vector ~b:

A~x = ~b.

The field of linear algebra studies these types matrix functions. One question one can ask about such
functions is the following: when does the matrix preserve the direction of a vector, when thought of as an
arrow in space? More specifically, is there a vector, call it ~x, such that

A~x = λ~x,

for some number λ? Such a vector and associated value are not guaranteed to exist. If they do, the vector
~x is called an eigenvector and λ is called the eigenvalue of that eigenvector.

Eigenvalues are one of the most important topics in linear algebra, the field which studies vectors, matrices,
and their properties. Eigenvalues are used ubiquitously in computer science, engineering, and physics. For
more information about why they are so useful, see the section on Spectral Graph Theory. We will limit our
discussion, however, to the use of the eigenvalues of the graph Laplacian.

Spectral Graph Theory

The field of spectral graph theory studies the eigenvalues of the graph Laplacian (and other matrices as-
sociated with graphs) and connects them with properties of the graph. (The name comes from the fact that
the set of eigenvalues of a matrix is often called its spectrum.)

To start, we have to know some things about the Laplacian: does it always have eigenvalues? How many
does it have? Do they always fall within some range?

https://www.khanacademy.org/math/linear-algebra/vectors-and-spaces/null-column-space/v/matrix-vector-products
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The first thing to notice about the example of the Laplacian given above is that it is symmetric. This
means if you flip it over its diagonal, also known as taking its transpose, you get the same thing. In other
words, the ij th entry is equal to the jith entry:

∆Γ(i, j) = ∆Γ(j, i).

This is not a coincidence: for any graph, the Laplacian will be symmetric (think about why that is). It’s
also very lucky for us, since symmetric matrices have some really nice properties. There’s a well-known
theorem in linear algebra called the spectral theorem that says if an n× n matrix is symmetric, then it has
n eigenvalues, up to multiplicity. Thus the Laplacian has |V | eigenvalues, up to multiplicity.

That last phrase, ”up to multiplicity,” is a little tricky. Here’s what it means: say you have an eigenvector
~x with eigenvalue λ. Now say there’s another vector ~y that also has eigenvector λ, but is pointing in a
different direction than ~x. We say in that case that the eigenvalue λ has multiplicity 2 . If there were another
vector ~z in a different direction than ~x or ~y, then λ would be said to have multiplicity 3, and so on.

So the spectral theorem is saying that if you count an eigenvalue with multiplicity 2 as being 2 separate
eigenvalues, then a symmetric matrix such as the Laplacian will have as many eigenvalues as there are ver-
tices. That gives us a lot of eigenvalues to work with, especially for big graphs.

One can also prove that the Laplacian is what’s called positive semidefinite. This means that all of the
eigenvalues are nonnegative (the ”semi” part means that some can be 0. In fact, the Laplacian always has
at least one 0 eigenvalue). Additionally, one can prove that all the eigenvalues are going to be less than |V |.

The next article will give more specific theorems about what the eigenvalues of the Laplacian can tell us
about a graph. We state one result here, however:

Theorem 1. The multiplicity of the eigenvalue 0 of the graph Laplacian is equal to the number of connected
components of the graph.

For example, the example we’ve been using has eigenvalues {4, 3, 1, 0}. We can see its eigenvalues are in
the range 0 to 4, and it has one 0 eigenvalue, corresponding to the single connected component of the graph.

Here’s another example. Let Γ be the following graph:

Then the Laplacian will be given by

∆Γ =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1



with eigenvalues {2, 2, 0, 0}, with two zeroes corresponding to the two connected components of the
graph.

Recap

Given a graph Γ:
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we can derive a matrix:

∆Γ =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3


which is going to have eigenvalues. Here, the eigenvalues are 4, 4, 4, and 0.

We know there will always be |V | eigenvalues, and they will always lie between 0 and |V |. The number
of 0 eigenvalues corresponds to the number of connected components of the graph.

To see more about what these eigenvalues can tell us about a graph, see the section on Spectral Graph
Theory.
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