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Introduction

The general goal of this project is to develop discrete analogues of results in
mathematical physics. In particular, we connect notions from physics such as
entropy and quantum states to the realm of graph theory, a mathematical ab-
straction commonly used to model networks in computer science, engineering,
and some other fields. Our graph theoretical model of quantum mechanics
interacts with different areas such as network theory, linear algebra, and the
topology of graphs.

Preliminaries

An graph Γ is a pair (V,E) where V is a set of vertices and E ⊆ V × V is
a set of edges connecting vertices to one another. A graph is oriented if we
assign directions to each edge.

Figure 1: Some standard graphs with particular numbers of vertices. From left to right: the
complete graph K5, the cycle graph C6, the star graph S8, and the path graph P4.

Definition (Incidence Matrix)
Let Γ be an oriented graph. The incidence matrix I of Γ is a |V | × |E|-matrix
defined by

I(k, l) =


−1 if el starts at vk
1 if el ends at vk
0 otherwise.

Graph Laplacian

We can associate with each graph a matrix called the graph Laplacian, an
analogue of the Laplacian from calculus, which is invariant under change of
orientation and thus well-defined for undirected graphs. We can then study
how the Laplacian changes under what is called interface gluing.

Definition (Graph Laplacian)
For a graph Γ with incidence matrix I , the Laplacian ∆ of the graph is the
|V | × |V |-matrix defined by

∆ = IIt

where t denotes the transpose of a matrix.

Definition (Interface Gluing)
Let Γ1 and Γ2 be two graphs. If Γ∂1 and Γ∂2 are two isomorphic subgraphs of Γ1

and Γ2 respectively, then ∂Γ ∼= Γ∂1
∼= Γ∂2 is an interface of the graphs Γ1 and

Γ2. The interface gluing of the two graphs is the graph Γ1 t∂Γ Γ2 resulting
by gluing along the interface.

Figure 2: The gluing of S5 and K5 along the interface of ∂Γ = P3.

Definition (k-subdirect sums)
Let A and B be two square matrices of order n1 and n2, respectively, and let
k be an integer such that 1 ≤ k ≤ min(n1, n2). Let A and B be partitioned

into 2× 2 blocks as follows:

A =

[
A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]
where A22 and B11 are square matrices of order k. The following square matrix
has order n = n1 + n2− k, and is called the k-subdirect sum of A and B and
denoted by C = A⊕k B.

C =

A11 A12 0
A21 A22 + B11 B12

0 B21 B22

 .
Theorem
Let Γ1, Γ2 be two graphs. Then the following holds

∆Γ1t∂ΓΓ2
= ∆Γ1

⊕n ∆Γ2

if and only if the interface is a disjoint union of vertices.

Von Neumann Graph Entropy

In classical information theory, Shannon entropy quantifies the uncertainty in a
classical random variable. Von Neumann entropy can be thought of as the quan-
tum counterpart of Shannon entropy, as it deals with probability distributions
over quantum states. Von Neumann graph entropy is the discrete analogue of
this concept, and it is interpreted as a rough measure of the complexity of a
graph.

Definition (Entropy)
Let Γ be a graph and the nonzero eigenvalues of the Laplacian be given by λi,
for 1 ≤ i ≤ n = |V |. Then the Von Neumann graph entropy (VNGE) of Γ
is given by

S(Γ) = −
n∑
i=1

λi log2 λi

and the trace normalized entropy of a graph Γ is given as

N(Γ) =

n∑
i=1

(
−λi

Tr(Γ)
log2

(
λi

Tr(Γ)

))
.

Theorem (Entropy of Standard Graphs)
For complete and star graphs, the VNGE is provided by

S(Kn) = −n(n− 1) log2 n and S(Sn) = −n log2 n.

For path and cycle graphs, the VNGE exhibits the limiting behavior

lim
n→∞

S(Pn)

−2n
= 1 and lim

n→∞
S(Cn)

−2n
= 1.

Theorem (Trace Normalized Entropy Approximation)
The trace normalized entropy of a graph Γ can be approximated using the
Taylor series expansion given by

N(Γ) ≈
m∑
i=0

ciTr(∆i+1)

where m is the order of approximation and ci is a coefficient dependent on m
and |V |.

Phase Space of the Schrödinger Equation

We define an analogue of the quantum mechanical Schrödinger equation on a
graph with n vertices. The solution of this equation is a vector evolving in time
with n complex entries (or 2n real entries), in what is known as phase space.
Here, we study the trajectory taken by the solution.

Figure 3: The solution of the Schrödinger equation projected onto a plane determined by
vectors ~u,~v ∈ C|V |. In the figure, we are increasing the real-part of the component u3 of ~u.

Definition (Quantum State)
A quantum vertex state (resp. quantum edge state) assigns a complex value

to each vertex (or edge) on a graph. It is a vector in C|V | or R2|V | (or C|E| or

R2|E|).

Definition (Discrete Schrödinger Equation)
Let |Ψ(t)〉 be a quantum vertex state that evolves in time t with initial condi-
tion |Ψ(0)〉. Then the discrete Schrödinger equation and its solution is given
by

∂ |Ψ(t)〉
∂t

= i~∆ |Ψ(t)〉 −→ |Ψ(t)〉 = exp(i~∆t) |Ψ(0)〉 .

Theorem
Let {Ei}ni=1 be the eigenstates of ∆, and |Ψ(0)〉 = c1E1 + · · · + cnEn the
initial state. If the eigenvalues of eigenstates with non-zero coefficients are all
commensurable, |Ψ〉 is periodic. Otherwise, |Ψ〉 is non-periodic and the closure

of the trajectory of |Ψ〉 is a m-dimensional torus embedded in R2|V |, where
m = |V | − k, where k is the number of commensurable eigenvalues.

Discrete Morse Theory

Smooth Morse theory is the study of smooth functions with non-degenerate
critical points on smooth manifolds. Within the subject, the critical points
allow us to understand important properties of the manifold the function is
defined on. Robin Forman in 2002 adapted an analogue for CW complexes,
and here we focus on developing the subject for graphs.

A discrete Morse function on Γ = (V,E) is an assignment V ∪ E → R
such that at every vertex, at most one connected edge as lower value (if there
are none, the vertex is critical), and at every edge, at most one endpoint has
higher value (if there are none, then the edge is critical).

A discrete Morse function f on a graph Γ gives rise a directed graph called
the gradient flow Γf , an oriented graph where e = (v, w) ∈ EΓf only if

f (v) < f (e).

Figure 4: (Left) A discrete Morse function on a graph. (Right) The resulting gradient flow
from the assignment.

Theorem
Let Γo be a directed graph and Γ be its underlying undirected graph. Then
Γo = Γf for some discrete Morse function f on Γ if and only if

1. no two edges share a tail, and

2. there are no directed loops.

Theorem
Let f be a discrete Morse function on a graph Γ. Then

1. An edge is a critical cell of f on Γ if and only if it is undirected in Γf .

2. A vertex is a critical cell of f on Γ if and only if it is a sink in Γf .

If we denote by Morse(Γ) be the set of all discrete Morse functions that can
be defined on a graph Γ, then a natural sense of equivalence on the set is

f ∼Γ g ⇐⇒ Γf
∼= Γg.

Theorem (Weak Morse Inequalities)
Let f be a discrete Morse function on a graph Γ. Let c0(f ) denote the number
of critical vertices, and c1(f ) the number of critical edges. Then

• bi(Γ) ≤ ci(f ) for i ∈ {0, 1}
• χ(Γ) = c0(f )− c1(f )

Graph de Rham Calculus

When one applies It to a vertex state, one gets an edge state. The way that
It acts is quite simple: it assigns to each edge the difference of values on that
edge’s vertices. Thus, It acts as an analogue of gradient differential operator.
Here, we develop a corresponding theory of integration.

Definition (Vertex Integral)
Let f be a vertex state on Γ. The vertex integral of f over Γ is given by∫ •

∂Γ
f =

∑
vi∈V

f (vi)dn(vi),

where dn(vi) is the net degree, i.e. incoming minus outgoing edges.

Definition (Edge Integral)
Let F be an edge state on Γ. The edge integral of F over Γ is given by∫ −

Γ
F =

∑
ei∈E

F (ei).

Theorem (Stokes’ Theorem for Graphs)
Let f be a vertex state on an oriented graph Γ. Then∫ •

∂Γ
f =

∫ −
Γ

Itf.

Future Directions

• Conjecture: If Γ is a random graph with a fixed number of vertices, then
N(Γ) upon prescribing k-many edges may be approximated as

∑∞
i=1 ci

i
√
k,

where each ci is a function dependent on |V |.
• Conjecture: The number of equivalence classes of discrete Morse func-

tions for a graph Γ such that there are b1-many critical edges is dependent
on the number of unique (non-isomorphic) spanning trees.

• What properties of graph integration are invariant under orientation?
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