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Smooth Morse Theory
Building Intuition

Note that an important result in smooth Morse theory is that given a
critical point, we can choose the correct local coordinates so the function
takes the form of a parabaloid opening upwards/downwards or a saddle
point.

Lastly, it turns out that there is an important correspondence between
Morse functions f and gradient-like vector fields for f .
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Shifting View

Discrete Morse theory was developed by Robin Forman around
2002, in his published work A Users Guide to Discrete Morse
Theory.

Here, he develops an adaption of smooth Morse theory for
CW complexes1 that preserves many discrete analogues to the
properties of Morse functions in smooth Morse theory.

We will only focus on the definition with 0-cells (vertices) and
1-cells (edges), i.e. graphs.

1CW complexes can be regarded as a generalization of graphs, where not
only can you glue points and edges (S0) together, but higher dimensional
spheres as well.
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Focusing on Graphs
Definitions

For a graph Γ, define an ordering on the cells, Γc = V ∪ E , by
declaring every vertex lesser than the edge of which it is an
endpoint.

Definition
Let Γ = (V ,E ) be a graph. A discrete Morse function is a function
f : Γc = V ∪ E → R such that for every σ ∈ Γc ,

|{τ ∈ Γc | σ < τ and f (σ) ≥ f (τ)}| ≤ 1; (1)

|{τ ∈ Γc | σ > τ and f (σ) ≤ f (τ)}| ≤ 1. (2)

We say a cell (vertex or edge) is critical if both sets (1) and (2)
above are empty. We let c0(f ) denote the number of critical
vertices, and c1(f ) number of critical edges.
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Results
Gradient Flow
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Results
Characterizing Critical Cells

We call this oriented graph corresponding to a pair (Γ, f ) of a
graph and it’s discrete Morse function the gradient flow Γf .

Theorem (A.T.)

1. edge is critical ⇐⇒ undirected in Γf

2. vertex is a critical ⇐⇒ sink in Γf

Another note to have in mind is critical vertices occur at the end
of gradient curves.

In fact, we can do even better. We can fully characterize discrete
Morse functions with gradient flows.
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Results
Characterizing Gradient Flow

Theorem (A.T)
Let Γo be a directed graph and Γ be it’s underlying undirected graph. Then
Γo = Γf for some discrete Morse function f on Γ if and only if

1. no two edges share a tail, and

2. there are no directed loops.

If we denote by Morse(Γ) be the set of all discrete Morse functions that can be
defined on Γ, then

f ∼Γ g ⇐⇒ Γf
∼= Γg

is an equivalence relation on Morse(Γ).

This turns out to be equivalent to Forman’s equivalence of discrete Morse
functions on a graph, i.e. f is equivalent to g if and only if for every vertex and
edge of Γ,

f (v) < f (e) ⇐⇒ g(v) < g(e).
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Results
Weak Morse Inequalities

Recall that the 0th Betti number of a graph, b0(Γ), is number of
connected components, and the 1st Betti number, b1(Γ), is the
number of independent cycles.

Additionally, the Euler
characteristic χ(Γ) can be expressed as b0 − b1 = |V | − |E |.

Theorem (Weak Morse Inequalities, A.T.)

Let Γ be a simple and finite graph and f : Γc → R be a Morse
function on the graph.Then

• b0(Γ) ≤ c0(f )

• b1(Γ) ≤ c1(f )

• χ(Γ) = c0(f )− c1(f )

Additionally, there have been numerous technical results concerning
the equivalence classes that are still being studied in more depth.
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Future Directions

• Study the number of equivalence classes for a given graph Γ.

• The number depends on the automorphism group Aut(Γ), and
how it acts on a special set of colored-graphs relating to Γ.

• We know the number when the automorphism group is trivial,
and are very close to obtaining it for an arbitrary graph.

• Expand from vertex-gluing to interface-gluing discrete Morse
functions and their corresponding graphs.

• Study properties of Morse complexes MΓ(f ) and their
relation to the equivalence classes.

• By observing the barycentric subdivision of simiplicial
complexes and regular CW complexes, attempt to frame
general discrete Morse theory in terms of these equivalence
classes.

• Develop an analogue of discrete Morse theory for hypergraphs.
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Graph Chain Complexes

Definition (Chain Complex of a Graph)

The chain complex of a directed graph Γ = (V ,E ) is a
sequence of vector spaces paired with linear maps

0→ C|E | ∂1−→ C|V | → 0,

where ∂1 is the boundary operator given by the |V | × |E |
incidence matrix I whose entries are

Iij =


1 edge ej enters vertex vi

−1 edge ej leaves vertex vi

0 otherwise

.
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The Graph Laplacian

Definition (Graph Laplacian)

The even and odd graph Laplacians ∆+ and ∆− of an oriented
graph Γ are given by

∆+ := II ∗ : C|V | → C|V |

∆− := I ∗I : C|E | → C|E |.

Both matrices are positive semidefinite and symmetric (and
therefore diagonalizable).

Lemma
∆+ is invariant under orientation. However, ∆− is not.
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Homology and Betti Numbers

Definition (Homology Groups)

The homology groups of a graph Γ are given by

H1(Γ) = ker(I ) = ker(∆−)

and
H0(Γ) = ker(I ∗) = ker(∆+).

Theorem (Contreras-Xu)

Let b1 and b0 be the Betti numbers of Γ. Then

dim(H1(Γ)) = b1

dim(H0(Γ)) = b0.
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Cochain Complexes and the Graph Differential

The graph cochain complex is simply the graph chain complex
but with the arrows reversed, and I replaced with I ∗:

0→ C|V | I∗−→ C|E | → 0.

By analogy with the differential operator on the de Rham complex,
we may view I ∗ as a kind of graph differential operator.
In vector calculus terminology, I ∗ serves as the graph gradient.
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Integration on Graphs

Definition (Vertex Integral)

Let f be a discrete function on the vertices of Γ. The vertex
integral of f over Γ is given by∫ •

∂Γ
f =

∑
vi∈V

f (vi )dn(vi ),

where dn(vi ) is the number of incoming minus outgoing edges.

Definition (Edge Integral)

Let F be a discrete function on the edges of Γ. The edge integral
of F over Γ is given by∫ −

Γ
F =

∑
ei∈E

F (ei ).
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Main Results

Theorem (A.R)

(Stokes’ Theorem for Graphs) Let f be a vertex function on an
oriented graph Γ. Then ∫ •

∂Γ
f =

∫ −
Γ

I ∗f .

Theorem (A.R)

(Graph Hodge Decomposition) Let Γ be an oriented graph and
H0(Γ) = ker(∆+) = ker(I ∗) and H1(Γ) = ker(∆−) = ker(I ) its nth
homology group. Then

C|V | = H0(Γ)⊕ Im(I )

C|E | = H1(Γ)⊕ Im(I ∗).
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Future Directions

1. What happens when we integrate an eigenvector with nonzero
eigenvalue of ∆+ or ∆−?

2. One may consider the Morse complex, the chain complex of
the subgraph induced by the critical cells of a Morse graph.

2.1 For an alternate proof of the Morse Inequalities, see
Contreras-Xu, ”The Graph Laplacian and Morse Inequalities.”

3. A more coherent theory of graph calculus can help answer
questions about graph differential equations, such as the
graph Schrodinger equation

∂ϕ

∂t
= i∆ϕ.
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questions about graph differential equations, such as the
graph Schrodinger equation

∂ϕ

∂t
= i∆ϕ.
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