Origins	Focusing on Graphs	Results	Future Directions	Appe
0		0		0
0		0		
		0		

Graph Topology and Discrete Morse Theory

Andrew Rosevear, Andrew Tawfeek Advised by Prof. Ivan Contreras

Amherst College

July 23rd, 2018

э

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

0	ri	gi	n	S
000				

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline Part I

Origins

Smooth Morse Theory Discrete Morse Theory

æ

0	ri	gi	ns
00			

・ロト ・聞ト ・ヨト ・ヨト

Outline Part I

Origins

Smooth Morse Theory Discrete Morse Theory

Focusing on Graphs

Definitions Gradient Flow

æ

0	ri	gi	ns
00			

・ロト ・聞ト ・ヨト ・ヨト

Outline Part I

Origins

Smooth Morse Theory Discrete Morse Theory

Focusing on Graphs

Definitions Gradient Flow

Results

Characterizing Critical Cells Characterizing Gradient Flow Weak Morse Inequalities

э

0	r	i,	g	i	n	S
00						

(日)、

Outline Part I

Origins

Smooth Morse Theory Discrete Morse Theory

Focusing on Graphs

Definitions Gradient Flow

Results

Characterizing Critical Cells Characterizing Gradient Flow Weak Morse Inequalities

Future Directions

э

Focusing on Graphs

Results 0 0

Future Direction

・ロト ・聞ト ・ヨト ・ヨト

Appendix 0

Smooth Morse Theory

Building Intuition

æ

Focusing on Graphs

Results 0 0 Future Direction

(日)、

Appendix 0

Smooth Morse Theory

Building Intuition

Note that an important result in smooth Morse theory is that given a critical point, we can choose the correct local coordinates so the function takes the form of a parabaloid opening upwards/downwards or a saddle point.

Focusing on Graphs

Results 0 0 Future Direction

(日)、

Appendix 0

Smooth Morse Theory

Building Intuition

Note that an important result in smooth Morse theory is that given a critical point, we can choose the correct local coordinates so the function takes the form of a parabaloid opening upwards/downwards or a saddle point.

Lastly, it turns out that there is an important correspondence between Morse functions f and gradient-like vector fields for f.

э

Shifting View

Discrete Morse theory was developed by Robin Forman around 2002, in his published work *A Users Guide to Discrete Morse Theory*.

¹CW complexes can be regarded as a generalization of graphs, where not only can you glue points and edges (S^0) together, but higher dimensional spheres as well.

э

Origins	Focusing on Graphs	Results	Future Directions	Appendix
•	00	0		0
		0		

Shifting View

Discrete Morse theory was developed by Robin Forman around 2002, in his published work *A Users Guide to Discrete Morse Theory*. Here, he develops an adaption of smooth Morse theory for CW complexes¹ that preserves many discrete analogues to the properties of Morse functions in smooth Morse theory.

¹CW complexes can be regarded as a generalization of graphs, where not only can you glue points and edges (S^0) together, but higher dimensional spheres as well.

)rigins	Focusing on Graphs	Results	Future Directions	Appendix
)	00	0		0
		0		

Shifting View

Discrete Morse theory was developed by Robin Forman around 2002, in his published work *A Users Guide to Discrete Morse Theory*. Here, he develops an adaption of smooth Morse theory for CW complexes¹ that preserves many discrete analogues to the properties of Morse functions in smooth Morse theory.

We will only focus on the definition with 0-cells (vertices) and 1-cells (edges), i.e. graphs.

¹CW complexes can be regarded as a generalization of graphs, where not only can you glue points and edges (S^0) together, but higher dimensional spheres as well.

Focusing on Graphs Definitions

For a graph Γ , define an ordering on the cells, $\Gamma_c = V \cup E$, by declaring every vertex lesser than the edge of which it is an endpoint.

Focusing on Graphs Definitions

For a graph Γ , define an ordering on the cells, $\Gamma_c = V \cup E$, by declaring every vertex lesser than the edge of which it is an endpoint.

Definition Let $\Gamma = (V, E)$ be a graph. A *discrete Morse function* is a function $f : \Gamma_c = V \cup E \rightarrow \mathbb{R}$ such that for every $\sigma \in \Gamma_c$,

$$|\{ au\in {\sf \Gamma}_c\mid \sigma< au ext{ and } f(\sigma)\geq f(au)\}|\leq 1;$$
 (1)

$$|\{\tau \in \Gamma_c \mid \sigma > \tau \text{ and } f(\sigma) \le f(\tau)\}| \le 1.$$
 (2)

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Focusing on Graphs Definitions

For a graph Γ , define an ordering on the cells, $\Gamma_c = V \cup E$, by declaring every vertex lesser than the edge of which it is an endpoint.

Definition Let $\Gamma = (V, E)$ be a graph. A *discrete Morse function* is a function $f: \Gamma_c = V \cup E \rightarrow \mathbb{R}$ such that for every $\sigma \in \Gamma_c$, $|\{\tau \in \Gamma_c \mid \sigma < \tau \text{ and } f(\sigma) \ge f(\tau)\}| \le 1;$ (1) $|\{\tau \in \Gamma_c \mid \sigma > \tau \text{ and } f(\sigma) \le f(\tau)\}| \le 1.$ (2)

We say a cell (vertex or edge) is *critical* if both sets (1) and (2) above are empty. We let $c_0(f)$ denote the number of critical vertices, and $c_1(f)$ number of critical edges.

Focusing	on	Graphs
00		

Origins

・ロト ・聞ト ・ヨト ・ヨト

Focusing on Graphs Definitions

æ

・ロト ・聞ト ・ヨト ・ヨト

æ

Origins	Focusing on Graphs	Results
0		•
0		0

・ロト ・聞ト ・ヨト ・ヨト

Results

Characterizing Critical Cells

We call this oriented graph corresponding to a pair (Γ, f) of a graph and it's discrete Morse function the gradient flow Γ_f .

Characterizing Critical Cells

We call this oriented graph corresponding to a pair (Γ, f) of a graph and it's discrete Morse function the gradient flow Γ_f . Theorem (A.T.)

- 1. edge is critical \iff undirected in Γ_f
- 2. vertex is a critical \iff sink in Γ_f

Characterizing Critical Cells

We call this oriented graph corresponding to a pair (Γ, f) of a graph and it's discrete Morse function the *gradient flow* Γ_f . Theorem (A.T.)

- 1. edge is critical \iff undirected in Γ_f
- 2. vertex is a critical \iff sink in Γ_f

Another note to have in mind is critical vertices occur at the end of *gradient curves*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Results Characterizing Critical Cells

We call this oriented graph corresponding to a pair (Γ, f) of a graph and it's discrete Morse function the gradient flow Γ_f . Theorem (A.T.)

- 1. edge is critical \iff undirected in Γ_f
- 2. vertex is a critical \iff sink in Γ_f

Another note to have in mind is critical vertices occur at the end of *gradient curves*.

In fact, we can do even better. We can fully characterize discrete Morse functions with gradient flows.

Origins	Focusing or
0	
0	

Future Directions

(日)、

Appendix 0

Results

Characterizing Gradient Flow

Theorem (A.T)

Let Γ_o be a directed graph and Γ be it's underlying undirected graph. Then $\Gamma_o = \Gamma_f$ for some discrete Morse function f on Γ if and only if

- 1. no two edges share a tail, and
- 2. there are no directed loops.

э

rigins	Focusing on	Gra
	00	

ng on Graphs

Results 0 Future Directions

(日)、

э

Appendix 0

Results

Characterizing Gradient Flow

Theorem (A.T)

Let Γ_o be a directed graph and Γ be it's underlying undirected graph. Then $\Gamma_o = \Gamma_f$ for some discrete Morse function f on Γ if and only if

- 1. no two edges share a tail, and
- 2. there are no directed loops.

If we denote by $\mathsf{Morse}(\Gamma)$ be the set of all discrete Morse functions that can be defined on $\Gamma,$ then

$$f \sim_{\Gamma} g \iff \Gamma_f \cong \Gamma_g$$

is an equivalence relation on $Morse(\Gamma)$.

gins	Focusing o	n Gra
	00	

Results ○ ● Future Directions

・ロト ・ 雪 ト ・ ヨ ト ・

Appendix 0

Results

Characterizing Gradient Flow

Theorem (A.T)

Let Γ_o be a directed graph and Γ be it's underlying undirected graph. Then $\Gamma_o = \Gamma_f$ for some discrete Morse function f on Γ if and only if

- 1. no two edges share a tail, and
- 2. there are no directed loops.

If we denote by $\mathsf{Morse}(\Gamma)$ be the set of all discrete Morse functions that can be defined on $\Gamma,$ then

$$f \sim_{\Gamma} g \iff \Gamma_f \cong \Gamma_g$$

is an equivalence relation on $Morse(\Gamma)$.

This turns out to be equivalent to Forman's equivalence of discrete Morse functions on a graph, i.e. f is equivalent to g if and only if for every vertex and edge of Γ ,

$$f(v) < f(e) \iff g(v) < g(e).$$

э

Focusing on Graphs	Results	Future Directions	Appendix
	0		0
	0		
	•		

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles.

Focusing on Graphs	Results	Future Directions	Apper
00	0		0
	0		

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles. Additionally, the Euler characteristic $\chi(\Gamma)$ can be expressed as $b_0 - b_1 = |V| - |E|$.

A D F A B F A B F A B F

Focusing on Graphs Results	Future Directions	
00 0		
0		

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles. Additionally, the Euler characteristic $\chi(\Gamma)$ can be expressed as $b_0 - b_1 = |V| - |E|$.

Theorem (Weak Morse Inequalities, A.T.)

Let Γ be a simple and finite graph and $f : \Gamma_c \to \mathbb{R}$ be a Morse function on the graph.

3

・ロン ・雪 と ・ ヨ と

Focusing on Graphs	Results	Future Directions
00	0	
	0	

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles. Additionally, the Euler characteristic $\chi(\Gamma)$ can be expressed as $b_0 - b_1 = |V| - |E|$.

Theorem (Weak Morse Inequalities, A.T.)

Let Γ be a simple and finite graph and $f : \Gamma_c \to \mathbb{R}$ be a Morse function on the graph. Then

•
$$b_0(\Gamma) \leq c_0(f)$$

3

・ロン ・雪 と ・ ヨ と

Focusing on Graphs	Results	Future Directions
00	0	
	0	

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles. Additionally, the Euler characteristic $\chi(\Gamma)$ can be expressed as $b_0 - b_1 = |V| - |E|$.

Theorem (Weak Morse Inequalities, A.T.)

Let Γ be a simple and finite graph and $f : \Gamma_c \to \mathbb{R}$ be a Morse function on the graph. Then

- $b_0(\Gamma) \le c_0(f)$
- $b_1(\Gamma) \leq c_1(f)$

Focusing on Graphs	Results	Future D
00	0	
	0	

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles. Additionally, the Euler characteristic $\chi(\Gamma)$ can be expressed as $b_0 - b_1 = |V| - |E|$.

Theorem (Weak Morse Inequalities, A.T.)

Let Γ be a simple and finite graph and $f : \Gamma_c \to \mathbb{R}$ be a Morse function on the graph. Then

- $b_0(\Gamma) \leq c_0(f)$
- $b_1(\Gamma) \leq c_1(f)$
- $\chi(\Gamma) = c_0(f) c_1(f)$

Focusing on Graphs	Results	Future
00	0	
	0	

Weak Morse Inequalities

Recall that the 0th Betti number of a graph, $b_0(\Gamma)$, is number of connected components, and the 1st Betti number, $b_1(\Gamma)$, is the number of independent cycles. Additionally, the Euler characteristic $\chi(\Gamma)$ can be expressed as $b_0 - b_1 = |V| - |E|$.

Theorem (Weak Morse Inequalities, A.T.)

Let Γ be a simple and finite graph and $f : \Gamma_c \to \mathbb{R}$ be a Morse function on the graph. Then

- $b_0(\Gamma) \leq c_0(f)$
- $b_1(\Gamma) \leq c_1(f)$
- $\chi(\Gamma) = c_0(f) c_1(f)$

Additionally, there have been numerous technical results concerning the equivalence classes that are still being studied in more depth.

ns	Focusing on Graphs	Results	Future Directions	
		0		
		0		
		0		

Origin

Future Directions

• Study the number of equivalence classes for a given graph Γ .

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Future Directions

- Study the number of equivalence classes for a given graph $\Gamma.$
 - The number depends on the automorphism group $Aut(\Gamma)$, and how it acts on a special set of colored-graphs relating to Γ .

(日)、

Future Directions

• Study the number of equivalence classes for a given graph Γ.

- The number depends on the automorphism group $Aut(\Gamma)$, and how it acts on a special set of colored-graphs relating to Γ .
- We know the number when the automorphism group is trivial, and are very close to obtaining it for an arbitrary graph.
- Expand from vertex-gluing to interface-gluing discrete Morse functions and their corresponding graphs.

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Future Directions

- Study the number of equivalence classes for a given graph Γ .
 - The number depends on the automorphism group $Aut(\Gamma)$, and how it acts on a special set of colored-graphs relating to Γ .
 - We know the number when the automorphism group is trivial, and are very close to obtaining it for an arbitrary graph.
- Expand from vertex-gluing to interface-gluing discrete Morse functions and their corresponding graphs.
- Study properties of Morse complexes $\mathcal{M}_{\Gamma}(f)$ and their relation to the equivalence classes.

э

Future Directions

- Study the number of equivalence classes for a given graph Γ .
 - The number depends on the automorphism group $Aut(\Gamma)$, and how it acts on a special set of colored-graphs relating to Γ .
 - We know the number when the automorphism group is trivial, and are very close to obtaining it for an arbitrary graph.
- Expand from vertex-gluing to interface-gluing discrete Morse functions and their corresponding graphs.
- Study properties of Morse complexes $\mathcal{M}_{\Gamma}(f)$ and their relation to the equivalence classes.
- By observing the barycentric subdivision of simiplicial complexes and regular CW complexes, attempt to frame general discrete Morse theory in terms of these equivalence classes.

Future Directions

- Study the number of equivalence classes for a given graph $\Gamma.$
 - The number depends on the automorphism group $Aut(\Gamma)$, and how it acts on a special set of colored-graphs relating to Γ .
 - We know the number when the automorphism group is trivial, and are very close to obtaining it for an arbitrary graph.
- Expand from vertex-gluing to interface-gluing discrete Morse functions and their corresponding graphs.
- Study properties of Morse complexes $\mathcal{M}_{\Gamma}(f)$ and their relation to the equivalence classes.
- By observing the barycentric subdivision of simiplicial complexes and regular CW complexes, attempt to frame general discrete Morse theory in terms of these equivalence classes.
- Develop an analogue of discrete Morse theory for hypergraphs.

2	
0	

(日)、

Bibliography

陦 I. Contreras. B. Xu.

The Graph Laplacian and Morse Inequalities arXiv:1704.08354

K. Knudson.

Morse Theory: Smooth and Discrete. World Scientific Publishing Co. Pte. Ltd., 2015.

🍆 L. Schneps.

Hodge Theory and Complex Algebraic Geometry I Cambridge University Press, 2002

👆 R. Forman.

A User's Guide to Discrete Morse Theory. Séminaire Lotharingien de Combinatoire, 2002.

📎 S. Lang.

Fundamentals of Differential Geometry Springer Science Business Media, 2001

э

Graph de Rham Calculus 0 0

С

Outline

Topology of Graphs

Chain Complexes The Graph Laplacian Graph Homology

Graph de Rham Calculus

Differentiation Integration Main Results Graph Stokes' Theorem Graph Hodge Decomposition

Future Directions

Solving Eigenvector Integration The Morse Complex Analyzing Graph DiffEqs

(日)、

Graph Chain Complexes

Definition (Chain Complex of a Graph)

The chain complex of a directed graph $\Gamma = (V, E)$ is a sequence of vector spaces paired with linear maps

$$0 \to \mathbb{C}^{|E|} \xrightarrow{\partial_1} \mathbb{C}^{|V|} \to 0,$$

where ∂_1 is the **boundary operator** given by the $|V| \times |E|$ **incidence matrix** *I* whose entries are

$$I_{ij} = egin{cases} 1 & ext{edge } e_j ext{ enters vertex } v_i \ -1 & ext{edge } e_j ext{ leaves vertex } v_i \ 0 & ext{otherwise} \end{cases}$$

э

・ロト ・ 雪 ト ・ ヨ ト ・

The Graph Laplacian

Definition (Graph Laplacian)

The even and odd graph Laplacians Δ^+ and Δ^- of an oriented graph Γ are given by

$$\Delta^{+} := II^{*} : \mathbb{C}^{|V|} \to \mathbb{C}^{|V|}$$
$$\Delta^{-} := I^{*}I : \mathbb{C}^{|E|} \to \mathbb{C}^{|E|}.$$

Both matrices are positive semidefinite and symmetric (and therefore diagonalizable).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The Graph Laplacian

Definition (Graph Laplacian)

The even and odd graph Laplacians Δ^+ and Δ^- of an oriented graph Γ are given by

$$\Delta^{+} := II^{*} : \mathbb{C}^{|V|} \to \mathbb{C}^{|V|}$$
$$\Delta^{-} := I^{*}I : \mathbb{C}^{|E|} \to \mathbb{C}^{|E|}.$$

Both matrices are positive semidefinite and symmetric (and therefore diagonalizable).

Lemma

 Δ^+ is invariant under orientation. However, Δ^- is not.

э

A D F A B F A B F A B F

Homology and Betti Numbers

Definition (Homology Groups)

The **homology groups** of a graph Γ are given by

$$H_1(\Gamma) = \ker(I) = \ker(\Delta^-)$$

and

$$H_0(\Gamma) = \ker(I^*) = \ker(\Delta^+).$$

э

・ロト ・聞ト ・ヨト ・ヨト

Homology and Betti Numbers

Definition (Homology Groups)

The **homology groups** of a graph Γ are given by

$$H_1(\Gamma) = \ker(I) = \ker(\Delta^-)$$

and

$$H_0(\Gamma) = \ker(I^*) = \ker(\Delta^+).$$

Theorem (Contreras-Xu)

Let b_1 and b_0 be the Betti numbers of Γ . Then

 $\dim(H_1(\Gamma)) = b_1$

 $\dim(H_0(\Gamma))=b_0.$

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Cochain Complexes and the Graph Differential

The graph cochain complex is simply the graph chain complex but with the arrows reversed, and I replaced with I^* :

$$0 \to \mathbb{C}^{|V|} \xrightarrow{I^*} \mathbb{C}^{|E|} \to 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

0

Cochain Complexes and the Graph Differential

The graph cochain complex is simply the graph chain complex but with the arrows reversed, and I replaced with I^* :

$$0\to \mathbb{C}^{|V|}\xrightarrow{I^*} \mathbb{C}^{|E|}\to 0.$$

By analogy with the differential operator on the de Rham complex, we may view I^* as a kind of graph differential operator. In vector calculus terminology, I^* serves as the graph gradient.

э

・ロト ・得ト ・ヨト ・ヨト

Integration on Graphs

Definition (Vertex Integral)

Let f be a discrete function on the vertices of Γ . The **vertex** integral of f over Γ is given by

$$\int_{\partial\Gamma}^{\bullet} f = \sum_{v_i \in V} f(v_i) d_n(v_i),$$

where $d_n(v_i)$ is the number of incoming minus outgoing edges.

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Integration on Graphs

Definition (Vertex Integral)

Let f be a discrete function on the vertices of Γ . The **vertex** integral of f over Γ is given by

$$\int_{\partial \Gamma}^{\bullet} f = \sum_{v_i \in V} f(v_i) d_n(v_i),$$

where $d_n(v_i)$ is the number of incoming minus outgoing edges. Definition (Edge Integral)

Let *F* be a discrete function on the edges of Γ . The **edge integral** of *F* over Γ is given by

$$\int_{\Gamma}^{-} F = \sum_{e_i \in E} F(e_i).$$

э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

0

Main Results

Theorem (A.R)

(Stokes' Theorem for Graphs) Let f be a vertex function on an oriented graph Γ . Then

$$\int_{\partial\Gamma}^{\bullet} f = \int_{\Gamma}^{-} I^* f.$$

э

・ロト ・聞ト ・ヨト ・ヨト

Main Results

Theorem (A.R)

(Stokes' Theorem for Graphs) Let f be a vertex function on an oriented graph Γ . Then

$$\int_{\partial \Gamma}^{\bullet} f = \int_{\Gamma}^{-} I^* f.$$

Theorem (A.R)

(Graph Hodge Decomposition) Let Γ be an oriented graph and $H_0(\Gamma) = \ker(\Delta^+) = \ker(I^*)$ and $H_1(\Gamma) = \ker(\Delta^-) = \ker(I)$ its nth homology group. Then

 $\mathbb{C}^{|V|} = H_0(\Gamma) \oplus \operatorname{Im}(I)$ $\mathbb{C}^{|E|} = H_1(\Gamma) \oplus \operatorname{Im}(I^*).$

э

Graph de Rham Calculus o o

Future Directions

1. What happens when we integrate an eigenvector with nonzero eigenvalue of Δ^+ or $\Delta^-?$

æ

・ロト ・聞ト ・ヨト ・ヨト

Future Directions

- 1. What happens when we integrate an eigenvector with nonzero eigenvalue of Δ^+ or Δ^- ?
- 2. One may consider the Morse complex, the chain complex of the subgraph induced by the critical cells of a Morse graph.
 - 2.1 For an alternate proof of the Morse Inequalities, see Contreras-Xu, "The Graph Laplacian and Morse Inequalities."

э

(日)、

•

Future Directions

- 1. What happens when we integrate an eigenvector with nonzero eigenvalue of Δ^+ or $\Delta^-?$
- 2. One may consider the Morse complex, the chain complex of the subgraph induced by the critical cells of a Morse graph.
 - 2.1 For an alternate proof of the Morse Inequalities, see Contreras-Xu, "The Graph Laplacian and Morse Inequalities."
- 3. A more coherent theory of graph calculus can help answer questions about graph differential equations, such as the graph Schrodinger equation

$$\frac{\partial \varphi}{\partial t} = i \Delta \varphi.$$

э

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・